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Abstract 

    Multidisciplinary projects often lack integrated representations to support a diverse 
community’s problem-solving process. In this paper, we discuss an interdisciplinary approach 
to knowledge elicitation, representation and transformation developed in the Statistical 
Sciences group at the Los Alamos National Laboratory. This approach is called Information 
Integration Technology (IIT), and it meshes techniques from cultural anthropology, the AI 
community, and Bayesian statistics to address the complexities of multidisciplinary research. 
Specifically, we use elicitation techniques derived from cultural anthropology to elicit tacit 
problem-solving structures from the “natives” – generally, the scientists and engineers 
collaborating on difficult R&D problems.  The elicited information, in turn, is used to develop 
ontologies that both represent the problem space in the “native language” of the research 
team, but which are more mathematically tractable to AI and statistical communities. Iterative 
cycles of representational refinement and quantification lead to the emergence of predictive 
statistical models that make intuitive sense to all parties: the engineers, elicitation experts, 
knowledge modelers and statisticians. This method can be used in many types of problems 
including reliability quantification as shown here. 
 
 
 
1. INTRODUCTION 
 

Statisticians are often asked to provide predictive risk and reliability assessments for a wide 
range of research and development projects. When these projects are very innovative, 
however, the statistician may be faced with the dilemma of minimal data for the system under 
scrutiny. Complicating such situations is the increasing ubiquity of multidisciplinary and 
multinational research teams: statisticians often find themselves asked to contribute to 
complex, emergent projects that challenge their ability to build predictive models capable of 
integrating multiple types of data, information and knowledge from a wide range of sources.  



  

In this paper, we discuss an interdisciplinary approach to knowledge elicitation, 
representation and transformation developed in the Statistical Sciences group at the Los 
Alamos National Laboratory. This approach is called Information Integration Technology 
(IIT), and it meshes techniques from cultural anthropology, the AI community, and Bayesian 
statistics to address the complexities of multidisciplinary research. Specifically, we use 
elicitation techniques derived from cultural anthropology to elicit tacit problem-solving 
structures from the “natives” – generally, the scientists and engineers collaborating on 
difficult R&D problems.  The elicited information, in turn, is used to develop ontologies that 
both represent the problem space in the “native language” of the research team, but which are 
more mathematically tractable to the AI and statistical communities. Iterative cycles of 
representational refinement and quantification lead to the emergence of predictive statistical 
models that make intuitive sense to all parties: the engineers, elicitation experts, knowledge 
modelers and statisticians.  

In the following pages, we describe the origins and structure of the IIT approach and 
demonstrate its use in the development of a hierarchical reliability model for a complex 
rocket system. The IIT knowledge modeling techniques are of particular interest to Bayesian 
statisticians, whose problem solving approach often relies on complex hierarchical networks. 
 
2. A PRIMER ON STATISTICAL CONSULTING AND BAYESIAN HIERARCHICAL 
MODELING 
 

Statisticians who work in experimental science and engineering fields become quite adept at 
consulting with research teams to develop a wide range of probabilistic models for decision-
making. Traditionally, statisticians have worked fairly bounded pieces of a larger problem: 
experimental design, for example, or failure mode analysis. This trajectory has resulted in a 
standard model for statistical consulting in which the clients provide the statistical consultant 
with a problem definition and some data sources that, in the statistician’s mind, lend 
themselves to a particular class of models. The statistician goes back “over the fence” and 
works an area of the problem, periodically asking clients to clarify some aspect of the model 
or to provide additional data.  

The past twenty years or so, however, have seen a trend towards large-scale, complex, 
multidisciplinary scientific projects that often incorporate experts from a wide range of 
disciplines, including engineering, biology, physics, computer science, chemistry, and others.  
The complexity of these problems often requires a greater level of participation from the 
statistician and also demands a statistical approach capable of combining multiple forms and 
types of data. 

Bayesian statistics is one such approach. This relatively new subfield of statistics was 
perceived until recently among more traditional “frequentist” statisticians as a radical, 
controversial, and even untenable approach to estimating probability (Wilson 2001). Today, 
Bayesian models are widely used to combine multiple sources of data to estimate the 
probability of an event in the future, based on relevant information regarding the occurrence 
of that event in the past. Although Bayesian models are well suited to addressing complex 
problems, constructing a Bayesian model requires a great deal of time and information about 
the problem at hand. The IIT approach was designed to address this problem by using 
Conceptual Graphs to represent the complex problem space.  Because Bayesian models are 



  

represented as chain graphs (i.e., nodes connected by arcs), they are remarkably synergistic 
with Conceptual Graphs.   
 
 
3.  INFORMATION INTEGRATION TECHNOLOGY FRAMEWORK 
 

The diagram shown below in Figure 1 outlines the IIT framework, which we use to derive 
qualitative knowledge models of a domain of interest, and transform these knowledge models 
into quantitative mathematical models such as Bayesian networks. The framework specifies 
the context in which these models are being formulated: for example, a decision-making 
environment in which they will be used to predict the reliability or performance of a system.  

IIT methods and the IIT framework are designed to support the emergence of a 
comprehensive, quantitative decision support model through developing a set of knowledge 
representations that serve as a common denominator for all problem owners. In a complex 
system reliability problem, “problem owners” may include engineers, program managers and 
sponsors, computer scientists, physicists, technicians, and other experts contributing to the 
problem. IIT requires the ongoing involvement of a knowledge modeler, who acts as a 
translator working iteratively among the problem owners, technical experts and consultant 
statisticians. The resulting graphical models provide a comprehensive, nuanced representation 
of the problem space. These representations are arranged hierarchically in interlinked levels 
of abstraction, the highest of which provides problem owners with an overview of the entire 
problem space.  The hierarchy of specification enables project participants to drill more 
deeply into important areas of the problem while maintaining a consistent logical structure 
throughout all levels of problem representation.  
 
 

 
Figure 1.  The Information Integration Technology Framework. 
 
 

The first stage in the IIT method is elicitation of the foundation elements: identifying the 
communities of practice and/or stakeholders involved in the problem, defining the problem 
space and the decisions that are to be made by all stakeholders, and documenting the 
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relationship between the stakeholders’ objectives and their decisions.  Once the problem 
space is defined, the knowledge modeler begins to work with experts to elicit the conceptual 
structures they use to work the problem.  Using this elicited information, the knowledge 
modeler develops graphical representations of the problem space using those elements. The 
visual representations used in the IIT method are derived from conceptual graph techniques 
pioneered by John Sowa (1984). As these qualitative representations emerge, the knowledge 
modeler works iteratively with the problem owners, experts and consultant statisticians to 
formulate the dependencies between concepts in the knowledge model.  Once finalized with 
the experts, the knowledge modeler and the statistician begin transforming these qualitative 
representations into mathematical models.  

The resulting mathematical framework is an extremely useful structure capable of 
combining multiple types of quantitative information to support decisionmaking in a traceable 
manner. Doing so requires identifying appropriate data sources to populate nodes in the 
model, transforming these data into joint probability distributions, and propagating these 
distributions and their associated uncertainties through the model.  
 
 
4. CONCEPTUAL GRAPHS 
 

The conceptual graph model proposed by John Sowa (1984) is a method of representing the 
mental models that people use to understand the world. This approach combines a mapping to 
and from natural language with a mapping to logic. A conceptual graph, which consists of 
concepts and relations connected by arcs, asserts a proposition and takes the form of a finite 
connected bipartite graph. Concepts represent any entity, attribute, action, state or event that 
can be described in natural language. Relations detail the roles that each concept plays, and 
the arcs serve as connectors between the two.  These graphs can be written in either a 
graphical representation or in a linear form to conserve space. 
  
4.1.  Simple Graphs 

This section presents parts of the conceptual graph model that form a central core.  This 
includes concepts, relations and the arcs between them. Central to the model is the ability to 
map the graphs into first order predicate calculus. An example of a simple graph is: 
 
[Cat: #123] -> (State) -> [Sit] -> (Location) -> [Mat] 
 
Which represents "A cat named 123 is sitting on a mat." 
 
4.1.1.  Concepts and Relations 

Concepts represent the entities, attributes, actions, states or events found in natural 
language.  In conceptual graph notation, they are shown as square boxes. A concept box has a 
referent field on the right of the colon.  In this way both generic concepts and particular 
individuals can be referred to.  For example, [Person: *] or [Person] both refer to the generic 
concept contains two fields separated by a colon and shows a concept type on the left of the 
colon and of Person, while [Person: #123] or [Person: Sam] refer to particular individuals, one 
named Sam and one named 123.  Every generic concept in the graph terminology is 
existentially quantified.  Generic concepts act like variables in logic, while individuals are 



  

like constants in logic.  Relations in the conceptual graph model specify the role a concept 
plays and define the relationship between concepts.  Relations are shown as circles in the 
graph notation and can have any number of arcs.  For example (Past) is a monadic relation 
with one arc, (Agent) is a dyadic relation with two arcs and (Between) is a triadic relation 
requiring three arcs.  
 
4.1.2.  A Logical Mapping 

The conceptual graph model defines the operator φ which maps simple conceptual graphs 
into formulas in the first order predicate calculus.  For these simple graphs, the only logical 
operators which are needed are conjunction and the existential quantifier.  For example, the 
conceptual graph: 
 
[Cat: #123] -> (State) -> [Sit] -> (Location) -> [Mat] 
 
maps into the following formula when the φ operator is applied: 
 
∃x∃y (Cat(#123) ∧ State(#123,x) ∧ Sit(x) ∧ Location(x,y) ∧ Mat(y)). 
 
Conceptual graphs are usually more concise than logical formulas because arcs on the graphs 
show the connections more directly than variable symbols.  
 
4.2.  Compound Graphs 

Compound conceptual graphs allow for the expression of more complex sentences than can 
be described using simple graphs. The components comprising compound graphs are 
discussed in this section and include nested propositions and co-reference link. Tense, 
modality and negation can also be represented in Conceptual Graphs. Figure 2 shows an 
example of a graph that contains most of these elements. 

4.2.1.  Propositions 
  A proposition is a concept whose referent is a set of conceptual graphs that are being 
asserted.  The graphs being asserted are said to occur in the context of that proposition, thus 
propositions are also referred to as context boxes.  Propositions can be nested inside of one 
another and Proposition is the default label for a box that has no other type label. Conjunction 
of two or more graphs is represented by drawing all the graphs inside a proposition.  Figure 2 
contains three nested propositions. 
 
4.2.2.  Co-reference Links 

Co-reference links in conceptual graphs show which concepts refer to the same entities 
within a graph.  In a sentence, these links are expressed as pronouns or other anaphoric 
references.  Figure 2 shows co-reference links using dashed undirected lines.  These co-
reference links are also referred to by Sowa [1984] as lines of identity and denote an equality 
relation between concepts. In Figure 2 for example, the phrase, "Sam thinks that the house has 
a kitchen," refers to a house that Sam already knows about.   



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  A conceptual graph of a complex sentence. 
  

 
5. THE CONTEXT: THE ROCKET DEVELOPMENT PROGRAM CENTER 
 

To illustrate the application of the methods we have developed, we use examples from a 
research and development program that gathers data on test rockets to analyze their 
performance during flight and to make modifications to their design as necessary. Throughout 
this discussion, all engineers and agencies are aliased to maintain controls over Proprietary 
and sensitive information about the program.  We refer to this program as the RDP, or the 
Rocket Development Program.  

The oversight agency for the RDP is a group of engineers located in the southeastern United 
States; we refer to them as RDPC, or the Rocket Development Program Center.  Two other 
groups of engineers are responsible for building separate sections of the rocket: one group of 
engineers is building a booster to send the rocket into the upper atmosphere, while the other 
group designs a test payload for the rocket to carry.  In addition, several other sub-contractors 
and vendors provide parts and support to each of the two primary engineering agencies.  
RDPC is primarily responsible for project management, cost controls, and scheduling.  

The RDPC program managers came to Los Alamos with a specific problem:  how does one 
develop a predictive reliability model for an engineering system that is still in the design 
stages?  Multiple concerns drove this question: the rocket development program is extremely 

“Sam thinks that the house has a kitchen and that Ivan  believes that 
there is a cat in the kitchen”
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expensive. Only one or two of the prototypes is built and flown and is usually destroyed in the 
process; rarely are the engineers able to salvage subsystems for reuse in further iterations of 
the program. Because each system flown is unique, there is little direct, performance, or 
reliability data available for parts or subsystems on the test rocket. Hence the program 
managers had little idea how to make predictions or assess risk areas for the flights.    

The goal of the LANL/RDP collaboration was to develop an integrated, full-system, 
predictive reliability model for an upcoming rocket flight.  In developing the model, Los 
Alamos developed a model framework that captured the critical interactions among the 
rocket’s subsystems during flight. We also elicited and document the many sources of data 
and information that the engineers used to build confidence in their rocket before flight.  The 
resulting model combines multiple sources of information in a rigorous, quantitative 
framework that can be used to identify and weigh potential risk areas to overall mission 
“success.” 
 
 
6. BUILDING A MODEL 
 
6.1.   Engineering Representations 

The contracting engineers in charge of developing the rocket are prolific creators of 
representations: mechanical drawings, electrical layout diagrams, interface control 
documents, reliability block diagrams, viewgraphs for debating design issues. Not 
surprisingly, many of these engineers expressed doubt about the utility of creating even more 
diagrams of their systems.  However, while their representations were sufficient for building a 
test rocket, they were not sufficient for creating a statistical reliability model.   For one thing, 
engineering drawings – like all representations – are locally meaningful mediums of 
expression that require experiential knowledge to be sensible to the viewer. Hence it can be 
quite difficult for a nonmember to decode the representations created by a community of 
engineers she has only recently met.   

The design and development process that the contracting engineers follow compounds this 
problem. As anthropologist Etienne Wegner (1998) has observed, problem solving is a 
process of devising representations of knowledge around which parties negotiate meaning. 
Like many engineering communities, the two primary contractors in the RDPC project each 
assign bounded teams of engineers to work on separate subsystems of the rocket. Engineering 
representations are used to communicate design requirements across team boundaries.  Each 
iteration results in new, updated representations that capture the current state of knowledge 
about each of the subsystems required for a functioning rocket. However, at no point in the 
engineering problem-solving process does the community develop an integrated 
representation of the rocket’s many subsystems as they are intended to work during flight. 
Indeed, demonstration of the successful integration of the community’s many “ways of 
knowing” only takes place once the rocket is in flight.   

To develop a reliability model as a Bayes net, however, the statistician must understand 
relationships among different elements of the rocket as it works during flight.  This is where 
knowledge modeling becomes a critical step in creating an integrated model, one that captures 
subtle dependencies among interrelated parts and uses those dependencies to predict states for 
the overall mission.  
 



  

6.2.    Defining project goals and identifying adviser-experts 
The first step in the IIT knowledge modeling process was to meet with the RDP project 

leaders to identify specific goals for the rocket system, to get an overview of how the rocket 
would function, to find out which contractors were responsible for the major areas of the 
project, and to determine the metrics that the RDP project leaders would use to assess the 
project’s outcomes.  At the same time, we devised a general set of goals for the statistical 
model: to support the rocket project by identifying risk areas, and to provide a quantifiable, 
traceable statement of risk to upper-level managers in RDPC. 

It is impossible to meet project goals without the cooperation of the project’s experts, and 
this requires identifying cooperative insiders who can act as adviser experts to the knowledge 
modeling team. To ensure the participation of adviser experts throughout the project, RDPC 
instructed the lead engineer in each contracting organization to support the model building 
effort.  RDPC also provided funding to these agencies so that they could pay their staff to 
contribute to the model development. These individuals would serve as adviser-experts within 
the contract organizations: insiders who would willingly partner with the knowledge modeler 
to identify other experts and to develop sound elicitation protocols and instruments.   
  
6.3.    Scratchnets and Success and Failure for System Builders 

Once we had met with the adviser experts in each of the contracting agencies and explained 
the goals of the project, the next step was development of a formal ontology to represent the 
primary concepts of knowledge in the problem space, and to understand the network of 
relationships among those concepts. During our first series of meetings with advisor experts 
from RDP, the booster contractor, and the payload contractors, we elicited information using 
a scratchnet (Paton et al, 1994). Scratchnets are straightforward, non-hierarchical node-and-
arc drawings that simply identify concepts as related to specified domain.  

In addition to developing a scratchnet representation of the problem, we also worked with 
the problem owners to elicit definitions of success and failure for the RDPC program 
managers. We borrowed a common aerospace terminology for describing mission outcomes: 
a “stoplight chart,” which is perhaps more accurately described as a continuum of failure-to-
success, represented by red, yellow and green panels. Equally important in this stage was 
eliciting how the booster and payload builders defined success and failure, so that we could 
understand how their goals interlocked with RDPC’s goals. We used the same stoplight 
continuum in elicitation sessions with our adviser experts at each agency. All “stoplight” 
charts were ultimately combined into a single chart, with all mission goals and states for 
mission outcomes clearly mapped.  In addition, we worked with RDPC to elicit metrics that 
would determine each of the states for mission success and failure, while eliciting metrics for 
subsystem performance from the adviser experts at each contracting agency. This information 
provided the statisticians with a means of quantifying a range of potential outcomes for each 
of the subsystems in the rocket, and a way to quantify overall mission success and failure.  
 
 
 
6.4 .  The Top Level Ontology 

Iteratively refining the scratchnets and the success failure continuums is a learning process 
for the knowledge modelers and leads to the development of a first-order ontology, one that 
mapped at the most basic level the key concepts for the domain “RDP-2 Rocket” and the 



  

relationships among those concepts.  In the ontology shown in Figure 3, we use a Conceptual 
Graph representation with concepts as rectangular nodes and relations as circular nodes and 
arcs indicating directionality among concepts and the relationships that tie them together.  
The diagram is black and white, but in the actual ontology, the concept boxes were color 
coded to ensure that specifications of concepts in later drawings were linked to the correct 
conceptual category. This representation is also recognizable to Bayesians statisticians, who 
use directed acyclic graphs as structures for propagating uncertainties.   

Note that the ontology differentiates between two stages in the design process: “design 
time,” when the engineers are working to plan and build the rocket; and “run time,” which 
represents the actual functioning of the rocket during flight.  Essentially, the knowledge 
modeler partnered with the engineers in the “design time” area of the ontology to create a 
statistical model that would be used to predict the reliability and performance of the rocket 
system during “run time,” the actual flight. Information generated during the design process 
in the “design time” area of the ontology was used to create a model structure and to gather 
data to populate the model.  
 

 
 
Figure 3. Ontology for RDP-2 rocket model. 

The top-level ontology is a significant point in the IIT method, for it is an elicitation tool 
that provides a guide for specifying further levels of the domain.  In the rocket project, the 
ontology revealed key focus areas: for example, what functions were required in order for a 



  

particular event to occur?  What parts were required for that function to occur? How could 
failures in individual parts contribute to failed events?   

During the elicitation process, the ontology also guides the development of a hierarchy of 
representations for the problem, from the most general and abstract representation (the top 
level ontology) to the most specific representations (dependency diagrams that detail specific 
relationships among parts, subsystems and functions).  One critical outcome for the 
representations is traceability from level to level, so that the representations flow in an orderly 
fashion from the ontology and make intuitive sense to all parties: the knowledge modelers, the 
statisticians, RDPC, and the builders of the booster and the payload.  
 
6.5.   Ontology Specification: Event Dependencies 

Once the top level ontology was completed we were ready to begin developing specific 
representations of its concepts.  The first level of specification focused on identifying 
measurable flight-time events that would act as conceptual waypoints, to discretize the linear 
flow of the planned rocket trajectory into a series of measurable focus areas for the model. 
Significantly, the order in this representation of flight events was not a time-ordered linear 
sequence, but rather a sequence of dependencies as shown in Figure 4. In other words, this 
level specified the order in which any particular event during the flight could impact, or be 
impacted, by any other event. Using the success and failure chart in combination with the 
event specification, the RDP staff could heuristically begin to relate overall mission success 
to states for any single event, by asking how a red, yellow or green state for a particular event 
might impact subsequent flight events.  
 
 

 
 
Figure  4.   Specification of inter-event dependencies for rocket flight. 



  

 
6.6.  Functional, Subsystem-Part, and Series-Parallel Specifications 

The next stage in specifying the full ontology was to focus on each flight event and begin 
identifying key parts, subsystems and functions. Working with the subsystem engineers, we 
created the next three levels of specification for each event: a functional diagram that detailed 
only the functions required for an event; a subsystem-part diagram that broke subsystems into 
collections of parts; and a modified series parallel diagram that specified the order in which 
parts in a subsystem work together to perform a function.  
   For each event displayed on the Inter-event Dependency Diagram, we created a 
representation to detail relationships between functions and events.  For example, Figure 5 
details the functions that the booster must execute in order for the first stage of the flight to 
occur.  Note that the representation says nothing about the state (red, yellow, green) of the 
functions, or the event itself: the functional drawing simply relates functions to other 
functions and ultimately to the event, “boosted flight.” 
 

 
 
Figure 5.  Functional view of event,  “Boosted Flight” 
 

The representation above identifies two primary functions for “TR Flight.” These functions 
include “Data Collection/Vehicle Tracking,” and “Boosted Flight,” which are themselves 
broken into several sub-functions.  These sub-functions, in turn, can be further specified by 
the parts and subsystems involved in their performance.    

Note that in the drawing above, the event “TR Flight” depends not only on a set of nested 
functions, but also on a previous event in the trajectory, “Ignition.” Given that a rocket flight 
is an enormously complex set of dependencies, one of the convenient things about this type of 
representation is that it allows the knowledge modeler to detail only the functions specifically 
required for the event in question. In other words, while a “Boosted Flight” of course depends 
heavily on what happens during “Ignition,” those ignition-related functions are detailed in a 
set of representations for the “Ignition” event and do not need to be re-drawn for “Boosted 
Flight.” 



  

Not shown in this paper are the next two levels of representational abstraction. Subsystem-
part representations are graphical inventories of specific parts and the subsystems that house 
them.  It is important to point out that this view provides no information about how any 
constellation of parts performs a function, but rather identifies how specific parts are grouped 
into subsystems.  This is important since functions are not infrequently the result of individual 
parts in separate subsystems working simultaneously across subsystems to produce a 
particular function. This diagram is less a representation for the statistical model than it is a 
“laundry list” that the knowledge modelers and the engineers use to ensure that all parts are 
properly grouped into their respective subsystems.   

Process knowledge is specified in the next stage of abstraction, a series parallel diagram 
that locates parts within a subsystem and displays the order in which parts function with each 
other to perform a given function.  Most engineering drawings tend to structural in nature, not 
functional: in other words, they display connections among parts, rather than describe how 
parts work together to perform one of more functions. Although we realized that a functional 
view of the system would be critical for developing any kind of predictive model of rocket 
performance, that knowledge was not only tacit; it was also distributed across numerous 
individual engineers.  Hence it was necessary to elicit and represent this information using the 
functional and structural specifications described above. This stage marked the beginning of 
the transition from an engineering understanding of the system, to a statistical dependency 
model that could be quantified and populated with available data to make predictions about 
the rocket in flight. 

The series parallel diagram was the first step in this transition. This type of drawing is 
somewhat similar to a series parallel diagram exemplified in a classic reliability block 
diagram, but with a great deal more descriptive information. Block diagrams simply connect 
parts to parts in the order that they must perform so that a given phenomenon occurs.  The 
series parallel diagrams we developed followed the structure of a reliability block diagram but 
contained a great deal more information about the context of a particular part and its 
functions.  
 
 
 
7.  DEPENDENCY DIAGRAMS: FROM KNOWLEDGE MODELING TO BAYES 
NETS 
 
7.1.  Dependency Diagrams: Roll Control 

Although different kinds of series parallel diagrams provide a wealth of information about 
how parts and subsystems and functions are linked to events on the rocket trajectory, these 
diagrams are not sufficient for building a Bayes net.  This is because Bayes nets represent 
dependencies among their elements: given what I know about one node in a model, what 
might I be able to say about nodes whose states depend on that event?   The final stage in the 
knowledge modeling process, then, is to transform the series parallel diagrams into 
dependency diagrams.  The difference between the two is subtle, but critical: Series parallel 
diagrams specify the linkages among parts related to a function and imply some order to those 
parts: for example, a power function might be described as, ‘Battery A feeds power to a PTS, 
which sends a current to the following electrical components:..”  A dependency diagram, on 
the other hand, describes that same power function as dependent on the performance of 



  

Battery A and the PTS, and how downstream components’ performance is (at least partially) 
dependent on that power function.  

The most immediate difference between a basic series parallel diagram and a dependency 
diagram is that subsystems are not represented in the latter. This is because subsystems 
simply designate the geographical location of parts within the rocket; dependencies exist 
between their parts and one or more functions. Strictly speaking, no functions depend on a 
subsystem; however, many functions may depend on the individual parts within a subsystem.   

In a dependency diagram, we are concerned with specifying three types of information: how 
functions depend on one or more necessary parts, how the performance of a particular part 
depends on a particular function (recursive relationships), and how parts may provide 
redundancy  (part A or part B is necessary for function X) or single points of failure (part A 
and part B are necessary for function X).  These relations among parts and functions specify 
the dependency structure for a Bayes net.  
 
7.2.     Roll Control: An Example of a Bayes Net 

The final transition occurred when the dependency diagram was turned into the Bayes net 
structure.  The diagram shown in Figure 6 is a Bayes net, extracted from the larger rocket 
model.  The statistician built it using the dependency diagram developed.  The initial 
translation can be performed easily from the dependency diagram to the Bayes net, although 
the knowledge modeler and the statistician do work together to check the Bayes net and 
ensure that the statistician has specified the right dependencies, labeled the functions and 
parts correctly, and indicated the proper directionality in the relationship arcs.  

The Bayes net is a highly distilled version of the dependency diagram: it eliminates all 
relationship labels and, at the level shown above, offers no information about subsystem 
location for any of the parts.   Population of the model occurs in later iterations, using the 
series parallel diagrams for failure (to designate a range of states for each of the part and 
function nodes), the stoplight charts (to designate states for the mission events), and the 
series-parallel data diagrams (to identify sources of data for each part and its associated 
failure modes).  The model generates a probability distribution for each event in the inter- 
event dependency diagram, as well as a final probability distribution for states red, yellow, 
and green for the entire mission.  In addition, the Bayes net allows the user to trace sample 
paths for different solutions through the states of each node, so that it is possible to connect 
given outcome for the entire system to the state of any particular node.  
 
8.0   CONCLUSION 
 

Multidisciplinary projects often lack integrated representations to support the community’s 
problem-solving process.  It is frequently difficult for project insiders to develop these 
representations: for one thing, they are focused on meeting the project’s goals.  More subtly, 
insiders often have a great deal of local knowledge about a specific area within a project, but 
may have difficulty leveraging that into a global view of the problem.  Anthropologists and 
knowledge modelers, on the other hand, are trained to elicit this information and can draw on 
a wide range of representation techniques to create useful abstractions of the project area.  
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Figure 6.  Bayes Net Representation for Roll Control 
 
An interdisciplinary approach to knowledge modeling, one that combines techniques from 
anthropology, artificial intelligence, and knowledge representation, is particularly helpful in 
situations where problems are undergoing definition, are emergent, and that involve multiple 
players from different disciplines and/or geographical locations.  When such modeling 
techniques are paired with quantitative tools from statistics, it becomes possible to develop 
complex models that can, among other things, enable the integration of multiple, diverse 
sources of data to estimate performance without testing.  Other research-related applications 
that we are exploring include development of models to quantify the value of an experiment 
without testing, to estimate the probability that an invader into a secure facility will be 
interdicted, and to quantify production requirements as a new consumer product is undergoing 
design and development. 
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